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Abstract

The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored
areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso-
ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent
genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by
analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to
the cancer by assembling these newly identified gene–gene relationships. We further characterized this global network by partitioning
the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis-
tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi-
cating a property of hierarchical modularity. Based on the known protein–protein interactions and Gene Ontology annotation data, the
proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same
biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo-
logical importance that maintain the basic structure of cell cycle-dependent gene networks.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

Cell cycling is essential for cell growth, in which gene
regulations are highly conserved among the eukaryotes
[1]. This process is composed of four phases: G1, S, G2
and M. In the G1 phase, the cell increases in size and pre-
pares to reproduce its DNA. Once all the necessary mole-
cules are collected, the internal clock moves the cell to
the S phase, in which the DNA is synthesized and chromo-
somes are replicated. After the DNA reproduction, a gap

called G2 comes, and then the cell divides. The stage in
which the cell divides is called M phase for mitosis. The
newly generated daughter cells immediately enter G1 to
start a new cell cycle. The movement within each phase
of a cell cycle and transition from one phase to the next
is highly regulated by some genes. For instance, genes
involved in cell cycle checkpoints can precisely control cell
growth and division in normal cells [2].

In 1981, Hereford and coworkers discovered that yeast
histone mRNAs oscillate in abundance during the cell cycle
[3]. Such genes that behaved in a periodic manner consis-
tent with the cell cycles are called cell cycle-dependent
genes. Many cell cycle-dependent genes are involved in
processes that occur only once per cell cycle. Such pro-
cesses include DNA synthesis, budding and cytokinesis.
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Additionally, many of these genes are involved in control-
ling the cell cycle itself. Such regulations might be required
for the proper functioning of some mechanisms that pre-
cisely maintain the time clock during a cell cycle. Most
importantly, understanding these regulations may to a
large extent help us understand the pathogenesis of many
diseases (e.g. cancer) in which abnormal behaviors of cell
cycle are important causative reasons.

DNA microarray technology [4] has enabled researchers
to simultaneously monitor the expression levels of thousands
of genes. In the experiments of time-series gene expression, a
comprehensive transcriptional profile of a gene can be
obtained to capture its temporal trends and characteristics
by measuring its activities at different time points in a cell
cycle. Up to now, the genome-wide transcriptional program
during the cell cycle has been investigated in a wide range of
the organisms. Some previous studies [5] focused on elucidat-
ing the gene–gene relationships based on global correlation
pattern over the whole time-course, and identifying clusters
of genes whose expression levels simultaneously rise or fall.
Obviously, the global clustering algorithm is unable to dis-
tinguish the detailed dynamic facets of a gene–gene relation-
ship in a cell cycle. Therefore, in this study we used a local
clustering algorithm [6] to identify transcriptional relation-
ships between cell cycle-dependent genes. By applying this
algorithm to a human HeLa cell cycle expression dataset
[7], we identified four types of temporal relationships
between cell cycle-dependent genes: simultaneous relation-
ship, time-shifted relationship, inverted relationship and
inverted time-shifted relationship. We further constructed
the gene transcriptional network specific to the cancer by
assembling these newly identified gene–gene relationships,
and then partitioned this global network into several cell
cycle phase-specific sub-networks based on the cell cycle
phase of each gene. We demonstrated that the dynamic prop-
erties and behaviors of these phase-specific sub-networks
could be basically depicted by the power-law node-degree
distribution. Nevertheless, the average clustering coefficients
of these networks were remarkably higher than those of pure
scale-free networks, indicating a property of hierarchical
modularity. Based on the known protein–protein interac-
tions and Gene Ontology annotation data, the proteins
encoded by cell cycle-dependent interacting genes tended
to share the same biological functions or to be involved in
the same biological processes, rather than interacting by
physical means. Finally, by studying the topologies of these
sub-networks, we revealed some important genes whose
functions are closely related to cancers while some uncharac-
terized genes may define novel pathways in regulating the cell
cycle in cancers.

2. Materials and methods

2.1. Gene expression datasets and preprocessing

The human HeLa cell cycling dataset used in this study
was part of a large-scale genome-wide program of gene

transcriptional profiling during the cell division in a human
cancer cell line [7]. Using spotted cDNA microarrays, con-
taining either 22,692 elements representing �16,322 differ-
ent human genes or 43,198 elements representing �29,621
genes, the previous study had identified 1134 clones (repre-
senting 874 genes) as cell cycle-dependent genes based on
the estimates of ‘‘periodicity score”, which provided a
starting point for further functional discovery. Because
the local clustering algorithm (see Section 2) is more suc-
cessful in analyzing datasets with a longer time series, we
thus focused on two datasets which contain 26 and 48 time
points (Thy2 and Thy3). Both datasets were synchronized
by double thymidine block methods. To validate the
observed temporal trends in the HeLa data, we further ana-
lyzed an additional dataset for yeast cell cycle analyzed ini-
tially by Spellman et al. [8], who obtained the genome-wide
transcriptions from the Saccharomyces cerevisiae cell cul-
tures that were synchronized by three different methods:
cdc15, cdc28 and a-factor. We chose the cdc15 synchro-
nized dataset for the purpose of replication, which mea-
sured transcriptional activities of yeast genes at 24 time
points. Raw data for each experiment were normalized in
a z-score transformation [9], so that for each gene the aver-
age expression value was zero and the standard deviation
was unity.

2.2. Defining four types of expression relationships

Simultaneous relationship: the expression profiles of two
genes are synchronous and coincident. Genes with such
profiles are expected to be subject to an identical transcrip-
tional regulation, which are sometimes called synexpres-
sion [10]. Time-shifted relationship: the profiles of the
two genes are similar, but one is time-shifted or out of
phase with respect to the other. The expressions of some
genes may be delayed compared to others due to a time-
lag in their transcription control. Inverted relationship:
the profiles of the two genes are inverted. These profiles
may exist where the expression of one gene inhibits or sup-
presses the expression of the other. Inverted time-shifted
relationship: this relationship has the characteristics of
both time-shifted and inverted correlations. In addition
to being inverted, the profile of one gene is staggered with
respect to the other.

2.3. Local clustering

Between pairs of genes, the published local clustering
algorithm was used to determine the modes of their tempo-
ral relationships: simultaneous, time-shifted, inverted and
inverted time-shifted, as defined previously. Briefly, this
method, which was based on the dynamical programming
method for local sequence alignment, was related to con-
ventional gene expression clustering in a fashion analogous
to the way that local sequence alignment (the Smith–
Waterman algorithm) is derived from global alignment
(Needleman–Wunsch) [6].
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2.4. Statistical significance determined by permutation tests

In order to identify significant gene relationships, we
thought it better to calculate proper p-values from the dis-
tribution of scores, as was conventionally done in sequence
and structural alignment [11,12]. A permutation statistic
method shuffling the normalized expression levels at differ-
ent time points (i.e. randomly interchanging the expression
levels at different time points) was used to determine the
p-value for a given score. The p-value is the probability that
a score derived from random profiles equal to or larger
than the observed one. The smaller the p-value is, the more
significant the relationship is. Finally, we selected a p-value
0.0001 as the threshold to determine significant gene
relationships.

2.5. Constructing cell cycle-dependent gene networks

To construct cell cycle-dependent gene networks, we
first obtained cell cycle phases of cell cycle-dependent genes
which had been generated by the previous studies, and then
partitioned the whole gene network into two types of cell
cycle phase-specific sub-networks based on the cell cycle
phase information: between-phase networks in which each
pair of genes came from two different phases and within-
phase networks in which all genes in the gene pairs were
from the same phase. Relationships in the between-phase
networks are frequently related to a transition process from
one phase to the next phase, whereas relationships in the
within-phase networks are associated with internal regula-
tions within a cell cycle phase.

3. Results and discussion

3.1. Construction of cell cycle-dependent gene networks

First, we defined the gene–gene relationships for the
HeLa cell cycle expression dataset [7] according to four

common modes of temporal relationships (defined in Sec-
tion 2). In order to obtain more reliable gene expression
relationships in HeLa cells, we only selected the gene pairs
within the intersection of the results identified at the signif-
icance level of p-value 0.0001 using Thy2 and Thy3 (syn-
chronized) datasets, respectively, which consisted of 684
gene pairs (Table 1). Once the list of significantly related
gene pairs was generated, we constructed a whole gene
expression network including 136 nodes and 684 edges by
assembling these pairs. For the network, the maximum
node degree was 41, and the average degree was 10.06.
As per the information on cell cycle phase(s) that two genes
were involved, the network was divided into several phase-
specific sub-networks, which can be categorized into two
types: within-phase networks where pairs of genes came
from the same cell cycle phase and between-phase networks
where gene pairs came from two different cell cycle phases.

3.1.1. Between-phase gene networks

Fig. 1 shows the between-phase sub-networks where
several phase-specific networks were not included in that
there were not enough numbers of significant gene pairs
to build the networks (e.g. S–G2). A total of 300 gene
pairs were involved in these networks. Obviously, major-
ity of relationships appeared in the G1/S–G2 (45 gene
pairs), G1/S–G2/M (55 gene pairs) and G2–G2/M (158
gene pairs) networks. In each between-phase network,
some relationship modes were particularly salient. For
example, in the G1/S–G2 network, 84.4% gene pairs were
of the inverted time-shifted relationships while in the G2–
G2/M network, 75.1% gene pairs were of the time-shifted
relationships.

3.1.2. Within-phase gene networks

Fig. 2 shows the within-phase networks in which we
observed only few blue lines (i.e. inverted and inverted
time-shifted relationships). There were a total of 384 gene
pairs in these networks, of which 90.9% gene pairs were

Table 1
Topological statistics of networks

Network name Number of
nodes

Number of
edges

Average
degree

Degree
exponent

Determination
coefficient

Average clustering
coefficient

Characteristic
path length

Diameter

Whole network
(HeLa)

136 684 10.06 1.30 0.63 0.41 2.76 8

G2–G2 network 38 167 8.79 0.94 0.59 0.57 1.95 6
G2/M–G2/M

network
42 188 8.95 0.91 0.72 0.65 1.96 5

G1/S–G2
network

33 45 2.73 1.45 0.95 0.00 2.29 5

G1/S–G2/M
network

42 55 2.62 1.68 0.95 0.00 2.92 7

G2–G2/M
network

55 158 5.75 1.63 0.77 0.00 2.64 7

Whole network
(yeast)

716 14926 41.69 1.16 0.62 0.43 2.82 9

Several networks with only a few edges were not considered. The characteristic path length of a network is the average value of the minimum distances
between two nodes. It describes how closely nodes are connected within the network.
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of the simultaneous relationships. Moreover, majority of
significant gene–gene relationships were observed in the
G2–G2 network (167 gene pairs) or the G2/M–G2/M net-
work (188 gene pairs). Other three networks were much less
enriched with gene pairs.

3.2. Topological properties of cell cycle-dependent networks

We further investigated many topological properties of
several networks including the whole network, some
phase-specific networks in HeLa cells and the whole net-

Fig. 1. Between-phase networks. Nodes and lines represent cell cycle-dependent genes and their relationships, respectively. The colors of a node are used
to distinguish the cell cycle phases (red = G1/S, yellow = S, green = G2, amethyst = G2/M, cyan = M/G1). The colors for lines describe the modes of
relationship: red solid line, simultaneous relationship; red dashed line, time-shifted relationship; blue solid line, inverted relationship; blue dashed line,
inverted time-shifted relationship.

Fig. 2. Within-phase networks. Nodes and lines represent cell cycle-dependent genes and their relationships, respectively. The colors of a node are used to
distinguish the cell cycle phases (red = G1/S, yellow = S, green = G2, amethyst = G2/M, cyan = M/G1). The colors for lines describe the modes of
relationship: red solid line, simultaneous relationship; red dashed line, time-shifted relationship; blue solid line, inverted relationship; blue dashed line,
inverted time-shifted relationship.
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work in yeast without regard to networks with only a few
edges using several graph theory-based approaches, such
as the degree of nodes, the diameter of networks (Table
1). In order to test the power-law node-degree distribution
property in these networks, degree exponent was estimated
by measuring the linearity between log[P(K)] and log(K),
where P(K) is the number of nodes with degree PK. The
determination coefficient was then computed for each net-
work, which ranges from 0 to 1. One represents perfect lin-
earity. As shown in Table 1, the results demonstrated that
these generated networks exhibited the power-law node-
degree distribution, which was consistent with previous
studies focusing on various biological networks including
protein–protein interaction networks [13], co-expression
networks [14], metabolic networks, etc. The networks had
the degree exponent between 0.91 and 1.68, and determina-
tion coefficient between 0.59 and 0.95 (0.77 on average).
Particularly, the degree exponents of within-phase net-
works that ranged from 0.91 to 0.94 were less than those
of between-phase networks ranged from 1.45 to 1.68, and
the determination coefficients were also less than those of
between-phase networks. In addition, the clustering coeffi-
cient defined as the ratio of the number of actual connec-
tions between the neighbors of the node to the number of
possible connections was calculated. Nodes with clustering
coefficient equal to 1 were part of a fully connected sub-
graph. As for these networks, the average clustering coeffi-
cients ranged from 0.41 to 0.65, which were several orders
of magnitude greater than that of pure scale-free networks.
This result suggested an underlying hierarchical organiza-
tion of modularity in these networks that was consistent

with previously characterized biological networks [15].
For all between-phase networks, the average clustering
coefficients were zero (i.e. there were not any connections
between node’s neighbors) in that we did not take into
account within-phase relationships in between-phase
networks.

3.3. The distribution of four modes of relationships among

the phase-specific networks

To analyze the distribution of four types of relation-
ships, we defined the time interval for a network as the
number of the phases separating the peaked transcriptional
activities between two genes. For instance, the time interval
of within-phase networks was defined to be 0, i.e. the tran-
scriptional dependence between two genes was of no phase
delay. Logically, the time interval for the G1/S–S network
was shorter than the one for the G1/S–G2 network. As
expected, most cell cycle-dependent genes in the within-
phase networks were in a simultaneous mode (Fig. 3). With
the time interval depicted by the cell cycle-dependent gene
networks becoming larger, the number of gene pairs with
the simultaneous relationship were reduced gradually and
vanished when the time interval was more than one phase.
A time-shifted relationship had a similar pattern: declined
frequencies of such relationship when the time interval
became larger. In contrast, inverted or inverted time-
shifted relationships showed different trends from that
observed above. Both inverted and inverted time-shifted
relationships increased their frequencies when the time
interval became larger. Almost all networks consisted of

Fig. 3. The distribution of four modes of relationships among the phase-specific networks. The proportions for different types of relationships were
calculated from three different time-series datasets: Thy2-HeLa (a), Thy3-HeLa (b) and cdc15-yeast (c). Black solid lines indicate simultaneous
relationships; black dashed lines indicate time-shifted relationships; gray solid lines represent inverted relationships; gray dashed lines represent inverted
time-shifted relationships.
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different modes of relationships. To validate the observed
temporal trends, we analyzed an additional dataset for
yeast cell cycling (more specific, the cdc15 dataset) [8],
which measured 24 time points. There were a total of
13,313 significant gene pairs identified among yeast cell
cycle-dependent genes. The distributions in the yeast
dataset were similar to the above results for HeLa cells.
However, we observed that the proportion of the simulta-
neous relationship suddenly rise and the proportion of
the inverted relationship suddenly fell in the G1–M/G1 net-
work (Fig. 3c1). Because M/G1 is not only the end but also
the start point in a cell cycle, and it is often difficult to iden-
tify the boundary between M and G1, we suspected that a
high proportion of the genes assigned to the M/G1 phase in
HeLa datasets were in fact in the M phase, while many
genes assigned to the M/G1 phase in yeast dataset were
in fact in the G1 phase.

3.4. Biological significance of the constructed networks

To evaluate the biological significance of these transcrip-
tional relationships, we compared them with the known
protein–protein interaction (PPI) data. The human PPI
data were derived from HRPD [16] (http://www.hprd.org)
and BIND databases, in which all the PPIs were manually
extracted from the literatures by expert biologists. The
yeast PPI data were downloaded from the DIP database
[17] (http://dip.doe-mbi.ucla.edu/). Ultimately, 37208 and
17473 PPIs documented in the human and yeast interaction
databases were obtained, respectively. We found, however,
that only 8 of 668 (1.20%) human gene pairs and 33 of
13,313 (0.25%) yeast gene pairs had direct supports from
the PPI data. These data imply that physical contact is
not necessary condition for a gene–gene interaction to
occur or the current PPI data do not provide such evidence.

We also annotated these gene pairs using Gene Ontol-
ogy [18]. We found that 227 (33.98%) human gene pairs
and 2264 (17.0%) yeast gene pairs shared a biological func-
tion(s) or were involved in the same biological processes
(excluding process ‘‘cell cycle” as it is obvious). In the
human HeLa dataset, 148 gene pairs participated in the
same biological processes and 123 gene pairs shared an
identical function(s). In the yeast dataset, 1051 pairs partic-
ipated in the same processes and 1871 pairs shared an iden-
tical function(s). There were some pairs of genes that both
shared a same function(s) and were involved in the same
biological processes. Hence, these gene pairs are more
likely to have a functional interplay rather than a direct
physical binding (as evidenced via PPI). We further ana-
lyzed the annotation for each phase-specific network using
GO database. The average annotation rate (the number of
annotated gene pairs within the same GO terms divided by
the number of all significant gene pairs) for all within-phase
networks except for S phase network (no any annotation)
was 31.48% (G1/S: 41.18%; G2: 21.66%; G2/M: 43.06%
and M/G1: 20.0%). In between-phase networks, the aver-
age annotation rate was 30.67% (G1/S–S: 11.11%; G1/S–

G2: 26.67%; G1/S–G2/M: 36.73%; S–G2/M: 41.67%;
G2–G2/M: 39.24% and G2/M–M/G1: 28.57%).

3.5. Identification of key genes for HeLa cell cycle networks

Large-scale mRNA experiments offered global views of
biology [19] and thus might provide insights into the role(s)
of a newly identified gene involved in the underlying com-
plicated network(s) leading to disease. To assess the impor-
tance of a gene in the network topology, we computed its
linkage degree (the number of connections), and identified
the key genes which were defined here as the nodes with a
degree bigger than four in the corresponding networks.
There were 65 key genes identified in these networks (Table
2). Majority of these hub genes were in the G2 and G2/M
phases. Twenty-nine hub genes were in the G2 phase and
30 hub genes were in the G2/M phase. We found that the
hub genes derived from a between-phase network almost
always appeared in the corresponding within-phase net-
works, suggesting their importance in modulating both
the within- and between-phase cellular processes. For
instance, 13 of 15 G2 phase genes and 14 of 16 G2/M genes
in the G2–G2/M network were also observed in the G2–G2
network and the G2/M–G2/M network, respectively. The
list of key genes played very important roles in modulating
the cellular processes in cancer cells. For example, in the
G2 network, gene TOP2A was the most important gene.
This gene encodes a DNA topoisomerase, an enzyme that
controls and alters the topological states of DNA during
transcription. This nuclear enzyme is involved in processes
such as chromosome condensation, chromatid separation
and the relief of torsional stress that occurs during DNA
transcription and replication. Recent studies showed that
the expression of this gene was significantly related to var-
ious cancers [20–22]. Increased expression of DNA topo-
isomerase II a is associated with relapses in tumors
[23,24]. Gene CDCA8 encoding chromosomal passenger
protein is known to play crucial roles in modulating mitosis
and cell division. Inappropriate chromosomal segregation
and cell division due to dysfunction of this gene may cause
an aneuploidy, a known mechanism leading to cancer [25].
Gene CCNA2 binds and activates CDC2 or CDK2
kinases, and thus promotes both cell cycle G1/S and G2/
M transitions and its overexpression was significantly asso-
ciated with a breast cancer [26]. In the G2/M network, gene
CENPF encodes a protein that is associated with the cen-
tromere–kinetochore complex, and its structure suggests
that it may play a role in chromosome segregation during
mitosis. Autoantibodies against this protein were found
in patients with cancer. More interestingly, we found both
genes DTL and PCNA present in almost all of the G1/S-
related networks, including G1/S–G1/S, G1/S–G2 and
G1/S–G2/M networks. The protein encoded by gene
PCNA is found in the nucleus and is a cofactor of DNA
polymerase delta. The encoded protein acts as a homotri-
mer and helps increase the processivity of leading strand
synthesis during DNA replication. In response to DNA
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damage, this protein is ubiquitinated and is involved in the
RAD6-dependent DNA repair pathway. Data show that
PCNA protein expression was significantly increased as
the grade of cervical lesion becomes higher from normal
epithelium to invasive squamous cell carcinomas. PCNA
protein expression shows a significant positive correlation
with an increasing histological abnormality [27]. The over-
expression of this gene may contribute to the occurrence
and progression of pancreatic cancer [28], hepatocellular
carcinoma [29] and stomach tumor malignancy [30]. How-
ever, we could not find much information about gene DTL
from NCBI gene database, which is only shown to code a
RA-regulated nuclear matrix-associated protein. Until
recently, Higa and his coworkers discovered that DTL
and PCNA interact with CUL4/DDB1 complexes and
are involved in CDT1 degradation after DNA damage
[31]. Banks et al. also found that PCNA, DTL and the
DDB1–CUL4A complex play critical and different roles
in regulating the protein stability of p53 and MDM2/
HDM2 in unstressed and stressed cells [31]. These wet-
lab results might partially elucidate the involved mecha-
nism(s) of gene DTL as a hub, consistent with our network
analysis.

Because these microarrays analyzed in this study
focused on only the cell cycle-dependent genes and do
not include all human genes, some important genes which
are not periodically expressed remain to be characterized,
for example, the Rb and p53 tumor suppressors which
are inactivated in HeLa cells as a result of binding the
E6/E7 proteins of the human papillomavirus [32]. There-
fore, these networks might be incomplete, because of only
a limited-size sample analyzed. In addition, while the anal-
ysis of the highly scored pairs found by the local clustering
can shed light on novel biological relationships, it is limited
to procure support from PPI due to the inadequate infor-
mation available in current databases. There are many
ambiguities in the current functional classifications [33]
and also there is a problem with the false positives in many
of the protein–protein interaction studies, particularly the
two-hybrid data [34,35].

In conclusion, we characterized gene–gene relationships
between cell cycle-dependent genes into four temporal
modes by applying the local clustering algorithm to a
human HeLa cell cycle expression dataset. Then, we con-
structed the cell cycle-dependent gene networks by inte-
grating transcriptional relationships with the cell cycle
knowledge. We demonstrated that these cell cycle-depen-
dent gene networks could be characterized well by four
modes of relationships that showed distinct temporal pat-
terns. We also found that transcription-related gene pairs
were more likely to share some function(s) or to be
involved in the same biological processes, but lack suffi-
cient evidence to implicate direct physical interaction (e.g.
binding). Finally, we identified the key genes based on their
topological roles (connectivity) in the built networks. These
function-known hub genes were supported to be closely
associated to cancer in the literature. One unknown gene,T
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DTL, whose functions to be fully characterized, might play
an important role in regulating the cell cycle waiting for
further wet-lab verification.
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